Implementation of linear maps with circulant matrices via modulo 2 rectifier circuits of bounded depth
نویسنده
چکیده
In the present note we show that for any constant k ∈ N an arbitrary Boolean circulant matrix can be implemented via modulo 2 rectifier circuit of depth 2k − 1 and complexity O ( n1+1/k ) , and also via circuit of depth 2k and complexity O (
منابع مشابه
A nonlinear lower bound for constant depth arithmetical circuits via the discrete uncertainty principle
We prove a super-linear lower bound on the size of a bounded depth bilinear arithmetical circuit computing cyclic convolution. Our proof uses the strengthening of the Donoho-Stark uncertainty principle [DS89] given by Tao [Tao05], and a combinatorial lemma by Raz and Shpilka [RS03]. This combination and an observation on ranks of circulant matrices, which we use to give a much shorter proof of ...
متن کاملComputation of the q-th roots of circulant matrices
In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملImproved method for finding optimal formulae for bilinear maps in a finite field
In 2012, Barbulescu, Detrey, Estibals and Zimmermann proposed a new framework to exhaustively search for optimal formulae for evaluating bilinear maps, such as Strassen or Karatsuba formulae. The main contribution of this work is a new criterion to aggressively prune useless branches in the exhaustive search, thus leading to the computation of new optimal formulae, in particular for the short p...
متن کاملHereditary properties of amenability modulo an ideal of Banach algebras
In this paper we investigate some hereditary properties of amenability modulo an ideal of Banach algebras. We show that if $(e_alpha)_alpha$ is a bounded approximate identity modulo I of a Banach algebra A and X is a neo-unital modulo I, then $(e_alpha)_alpha$ is a bounded approximate identity for X. Moreover we show that amenability modulo an ideal of a Banach algebra A can be only considered ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1305.4389 شماره
صفحات -
تاریخ انتشار 2013